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Application of Rayleigh-Ritz Method to Dielectric

Steps in Wave~uides*
K E. COLLIN~ AND R,

w

M. VAILLANCOURT~

Summar~-The Rayleigh-Ritz method is applied to obtain ap-
proximations to the first N eigenfunctions and corresponding eigen-
values in an inhomogeneously filled rectangular waveguide. These

approximate eigenfunctions are then used to obtain a solution for the

reflection and transmission coefficients at the junction of an empty

and partially filled waveguide. Theoretical and experimental results

are given for a dielectric slab which extends completely across the

broad dimension of the guide, but only partially across the narrow di-

mension. The experimental values are within the experimental error

of the computed values obtained by considering the dominant mode

and only two evanescent modes.

lNTRODUCTION

W\ ‘AVE propagation in a waveguide inhomogene-

ously filled with a dielectric has been studied by

many authors.1 As a general rule, the modes are

more ccmplex and transcendental equations have to be

solved, in order to find the propagation constants of the

various modes. This has led several authors to consider

the application of variational methods for obtaining ap-

proximations to the eigenvalues. z–~ By means of the

Rayleigh-Ritz method (hereafter called the R-R meth-

od), one may obtain approximations for the first N ei-

genvalues, and also for the first .]T eigenfunctions.s G In

this paper, the discontinuity between an empty and an

inhomogeneously filled rectangular guide will be studied

using the R-R method. The following procedure is used.

1)

2)

The first N eigenfunctions in the inhornogeneously

filled guide are approximated by the Raydeigh-

Ritz method.

Equations expressing the continuity of the tan-

gential field components at the junction are then

ea~il>~ written down and solved for the reflection

and transmission coefficients.

* Manuscript received by the PGMTT, October 16, 1956.
~ Canadian .4rmament Res. and Dev. Establishment, Valcartier,

P. Q.
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In a rectangular guide inhomogeneously filled w~th a

dielectric slab, as in Fi~. 1, the two sets cjf fundamental

modes are the longitudinal section electric and magnetic

modes (LSE and LSM modes), having the electric and

magnetic vector, respectively, contained entirely within

a longitudinal section. In an empty guide, the TE and

TM modes may be derived from a magnetic and an

electric Hertzian potential having only a longitudinal

component respectively.7 By analogy with this prob [em,

it is readily seen that the LSE and LSN[ modes may be

derived from a magnetic and an electric Hertzian po-

tential, respectively and having a single component di-

rected normal to the dielectric-empty gl~ide interface.

These two sets of modes form a complete set in which

any arbitrary field distribution may be expanded.x

IiEiiL#f/
x -x

(a) (b)

Fig. I—[nhomogeneously filled rectangular waveguide.

For a general inhomogeneously filled cylindrical

guide, the division into LSE and LSM modes is not

possible.

When an H1O mode is incident at the j unction of an

empty rectangular guide and a guide partially filled, as

in Fig. 1 (a), both LSE and LSM modes are excited. In

the case of Fig. 1 (b) with an H1O mode incident, only Hno

modes are excited. The case of Fig. 1 (a) is considerably

more complex and, therefore, was chosen as a good ex-

ample to which the R-R method could be applied.

This same type of dielectric step discontinuity has

been treated in a recent paper by .hgulo, using the c-or-

rect expressions for the eigenfunctions and a variational

method for evaluation of the equivalent circuit param-

eters. g However, the coupling of the LSE modes by the

7 J. A. Stratton, “Electromagnetic Theory, ” McGrav’-Hill Book
Co., Inc., New York, N. Y., sec. 6.1.; 1941.

8 J. I’an Bladel, “Field expandibihty in normal modes for a mllti-
ktyered rectangular or circular waveguide, ” -T. FrwzHi}z lmt., VOI.
2.53, pp. 313–32 1; April: 1952.

‘ C. M. .i:gulo, “Dlscontinuities in a rectangular wa veguide par-
tially tilled \vlth dielectric, ” IRE TRANS., vol. NfT’T-5. pp. 68- 74;
January, 1957.
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step when a LSNI mode is incident is neglected. There-

fore, the results obtained are only approximate and

valid for small discoutinuities; i.e. (t<<b or t = b, where t

is the slab thickness and b the waveguide height) when

the amplitudes of the coupled LSE modes are small.

This same step has been analyzed by R. E. Collin

(unpublished work) as well as the simpler case of the

H-plane dielectric step.lo

Use of the R-R method has the great advantage of

avoiding evaluation of many complicated expressions,

especially for cases where a waveguide cross section is

divided into more than two regions by dielectric media

of different dielectric constant.

WAVE EQUATION FOR THE MODES

In order to bring the problem being studied into the

class that can be handled by the normal Sturm-Liouville

theory, the rectangular guide will be considered as filled

with a lossless dielectric material with a dielectric con-

stant which is a continuous function of the coordinate y,

but independent of x and z. From the theory for the

continuous case, one may readily pass to the case where

the dielectric constant is a discontinuous function of y;

e.g., a slab filling. With a varying dielectric constant, the

wave equation satisfied by the Hertzian potentials are

modified and therefore will be derived here.

LSM Modes

Maxwell’s equations in a source free medium are

+ +
V X H = j6XoKE, (la)

4 +
VXE=–jWpH, (lb)

4
VB = O, (lC)

V.KE = 0, (Id)

where K is the relative dielectric constant and here is

considered as a function of y.

By virtue of (lc), one may take

+ +
H = jweOV x 11~ (2)

+
where HE is an electric Hertziau potential with a y com-

ponent only. From (lb)

+ +
vx~=k02vxflE

which integrates to

-+ +
E = k/lIE + V+. (3)

From (la)

+ + + +
V X V X HE = VV IIz – VzII~ = Kk02~~ + KVC$

+

= /(k02~E + VK+ — I#vK. (4)

10.R. E. Collin and J. Brow!, “The calculation of the equivalent
circuit of an axially unsymmetrical waveguide junction, ” Proc. IEE,

vol. 103, pt. C, pp. 121–128; March, 1956.

+
As yet V+ and V HE are unspecified and one may,

therefore, put

+
VV HE = VK+

which apart from an irrelevant constant integrates to

+
VHE = K@. (5)

+
From (5), @ = K–IV HE and hence the wave equation for

11~, i.e., (4) becomes

* + +
V2n~ + Kk021& – K–lVKV HE = O (6)

while (3) for the electric field becomes

+ + *
E = koz~~ + V(K-’V ~?J)

4 -+

= V IIEVK-l + K–lVV IIB + Kk02~E
+ + +

= Kti02nE + h–lvv .~E — K–27 ~,ETVK
4

= K–lV X V X HE, (7)

this latter result following from the wave equation.

From (7), one sees at once that (Id) is satisfied, since

+
VKE=V(Vx Vx; ~)SO.

For a variation with x according to sin rx/a and ex-

ponential z dependence, the solutions to (6) are of the

form

++
HE = ‘iU sin’3 ~~(y)e+y’ (8)

a

where ~B is a solution of the Sturm-LiouviH~ equation

or equivalently

d 1 d+B ( )—+~(&’-f++ +E=O,
dyxdy K ~2

Eq. (9) has an infinite number of solutions IJE. with cor-

responding eigenval ues Ymz. These solutions form an

orthogonal set with respect to the weighting function

K–l and may be normalized so that

s

b

hn+i@-ldy = L$,(. (10)
o

where 8., is the Kronecher delta and is equal to unity,

if n =s and zero otherwise. When K is a continuous func-

tion, both #E. and d#E./dy are continuous.

When K is the discontinuous function,

~(~) = Ko — (Ko — l)u(y — t)

where b’(y — t) is the step function

{

o, y<t,
U(y – t) =

1! y>t,

(11)

(12)
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~h’. an’~ K-’(d*E~/dy) are continuous in order that the

tangential field components should be continuous at the

interface. At y = o, b, d~E./dy vanishes. The term

dK d+~
~–l _ _

dy dy

in the differential equation (9) becomes

d+E
K–l(l — Kn)ti(~ — t) — ,

dy

where J(y — t) is the Dirac impulse function. The term

d#E/dy is discontinuous at y = t and hence, the second

derivative also has an impulse discontinuity at y = L The

physical reason for these discontinuities is the polariza-

tion charge in the dielectric.

LSE Ai’odes

The 1ongitudinal section electric modes do not have a

comporlent of electric field parallel to VK and, therefore,

+ ++
VKE=KV. E+ EVK=O

+
gives V E = O. For these modes, one may take

+ +
E = – jq.JV x H,,f (13)

-+
where II,w is a magnetic Hertzian potential with only a

y component. From (la),

--+ + +
V X H = ~k~zv X ~M = fi02v x KHM,

since

+ 4 + +
V ~ K~,}f = KV x II,lf – ~,lf x VK = KV x IIIr,

This equation integrates to

+ ---+
H = KkI)2~,I~ + Vv.

From (1.b),

+ + +
VV . ~,,r – vz~fl~ = Kk02~,TI + ~V.

4

Let VV 11.w = Vv and the wave equation

-+ +
vz~.lf + Kk02~,w = ~,

+

while the equation for H becomes

.s

+
for 11.w becomes

(14)

.

.ti = Kk,21ill + vvtiM = V X V X tijf. (15)

With an x variation according to cos ~x/a and exponen-

tial z variation, the solution to (14) is of the form

++
HAI = iV cos ‘—x ~,lf(y)e~~’, (16)

a

where #M is a solution of

Eq. (17) has an infinite number of solutions, ~,~[~, with

corresponding eigenvalues, @.2, and these solutions can

be chosen to form an orthonormal set such that

sb

+Mn+,>fsdy = &M. (18)
o

Both ti,w~ and d$~,Jdy are continuous, irrespective of

whether K is continuous or not. At y = O, b, I)M. vanishes.

MINIMUM CHARACTERIZATION OF THE ~IGENVALtJES

LSM Modes

If (9) is multiplied by K–l~E and the term involving

the second derivative integrated by parts once (this

term vanishes, since ~E and K–l(d~E/dy) are both con-

tinuous and d*B/dy vanishes at y = O, b), one gets

sb

72

0

.-l$.zdy-~b{(z!)’

-(Kk++E2}K-Ldy’19)
Eq. (19) is a variational expression for the propagation

constant Yz. An extrernisation of this equation by that

class of functions d(y), which are continuous witlh at

least a piecewise continuous derivative and orthogonal

to the first K — 1 correct eigenfunctions #E~, with re-

spect to the weight factor K–l, yields an upper bound on

the true eigenvalue ~~z. By means of the expansion

theorem for a complete set of functions, one may write

The orthogonalization conditions give

a,, = O; ?$=O, l,. ..1—1. (21)

Substituting into (19), gives

The integrated term vanishes and, using

the result is

(9) and ( 10),

(22)
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Assuming that the eigenfunctions $E. have been ordered

so that Y02<Y12<YZZ “ “ “ <~~z, the result (22) may be

written as

,,% U“z
since ~%2 >TK2 for n > h’. Only when @S+EK, will

y’= YK2. In general, the approximate eigenvalue is too

large. A suitable series of functions to use for this ex-

tremisation are the corresponding eigenfunctions for the

empty guide. For the LSM modes these are

deon fz7r

4Ev = — Cos — y, $L=0,1,2,.””, (24)
bb

where ton is the Neumann factor,

eon =

LSE Modes

For the LSE modes,

responding to (19) is

p, J,= o

(2, !L >0.

the variational expression cor-

-(’ko’+’i’}dy=o‘2’)
AS for the previous case, the approximation to the Kth

eigenvalue by that class of functions which are continu-

ous and vanish at y = O, b, and are orthogonal to the

first K – I eigenfuuctions y.~r, is from above. A suitable

set of functions for this extrernisation are again the cor-

responding functions for the empty guide, Le.,

T

‘i ?zn-
+M. = — sin — y, ?2 =1,2,-... (26)

bb

The above variational expressions are also valid when

K is a discontinuous function of y.

THE APPROXIMATE EI~ENIWJNCTIONS

This section will consider the solution for the first

N+ 1 approximate eigenvalues and corresponding ap-

proximate eigenfunctions for the case of the LSM modes.

In the previous section, it was shown that the extremisa-

tion of (19), with respect to functions which were

orthogonal to the first k-— 1 true eigenfunctions, gave

an upper bound on the Kth eigenvalue. Since one does

not know the true eigenfunctions, the class of functions

to be used for the Kth extremisation will be made

orthogonal to the first K — 1 approximate eigenfunc-

tions. It may be shown that this procedure also yields

an upper bound on the Kth eigenvalue. 11 The proof is

N Courant ~lld Hilbert, oP. cif., ch. 6.

based essentially on the principle that the class of func-

tions which are used for the first N+ 1 approximate

eigenfunctions is a narrower class of functions than the

complete set of true eigenfunctions.

The substitution of a series of the functions @En into

(19) and subsequent extremisation leads to a matrix

eigenvalue problem. The resultant matrix is a symmetri-

cal real matrix whose eigenvalues are approximations

from above to the first i’!+ 1 eigenvalues. For each

eigenvalue, a solution for an eigenvector exists and the

totality of eigenvectors obtained form an orthogonal set

with respect to suitable weighting factors. This latter

result follows from the well-known theory of real sym-

metrical matrices. IZ For this reason, the orthogonaliza-

tion conditions, which were originally imposed upon the

functions ~ErL, may be dispensed with.

From this point on, #Bn and Ymz will be used to denote

the nth approximate eigenfunction and eigenvalue, re-

spectively. For the Kth approximate eigenfunction take

(27)
n=o

where a..~, are unknown coefficients to be determined

subject to the normalization condition

Jo

where

Substituting

P,n = P..

N h)

,=0 ,,=0

nb

—
-J K–l@EndEsdY.

o

nto (19) gives

{

d& dqiEiz

dy dy

1 (28)

( 7r2
— )}a, + YK’ 4E@En dyK’o’ — —

= stationary quantity. (29)

Let

b

s{

d@Es d@E.
~–1 __ ——

0 dy dy

-(Kk02-a+E8+En)dy‘8”= ‘n ’30)
Thus,

~ ~ @@nK(T,n – yKaP,.) = stationary quantity. (31)
.=O Z=o

Equating all d/dan~ equal to zero for n = O, 1, . . ., N,

yields the following set of homogeneous equations

~ a.dT,. – YK2p~~) = 0, S=o, l,. .. iv. (32)
n=o

12c, G. h[ontgomery, R. H. Dic!ie, and E. M. Purcell, “Princi-

ples of Microwave Circuits, ” M. I.T. Rad. Lab. Ser., McGraw-Hill
Book Co., Inc., New York, N. Y., vol. 8, pp. 405-409; 1948.
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For a solution, the determinant must vanish and this

results in N+ 1 roots for ~X2 which are the lV+ 1 ap-

proximate eigenvalues. For each root, say y~’, a solu-

tion for an~ can be obtained, this solution is unique

when subjected to the normalization conditions (28).

The set of coefficients a,,~ are orthogonal to the set a.R

with respect to the weighting factors P.% for K #R, i.e.,

The proof is given in the Appendix.

For the LSE modes, the set of homogeneous equations

obtained are

g hdQm – i’3K2LJ= O, S=1,2, . ..1V. (34)
n—l

where

-(”ko’-:)~’’bfn}d~d~‘3’)
The vanishing of the determinant yields the first N ap-

proximate eigenvalues. The corresponding eigenvectors

define the corresponding approximate eigenfunctions.

The coefficients b.~ are subjected to the normalization

condition

and satisfy the orthogonality conditions

MATCHING OF FIELDS AT JUN(:TION

Consider the junction of an empty+ and inhomogene-

ously filled rectangular guide as illustrated in Fig. 2.

It

~
——.

A-+4 ~~a

-%-’-4 “““~’
Fig. 2—Junction of an empty and partially filled rectangular guide.

Let an EZIO mode be incident from the empty guide. The

higher order modes excited will consist of an infinite

number of the LSM and LSE modes. It will be assumed

that only the dominant mode, i.e., the first LSM n~ode,

propagates in either the empty or partially filled guide.

For an approximate solution, only a finite number of

modes are considered and in the partially filled guide

these will be taken as the approximate eigenfunctions

as obtained by the R-R method. At the junction z = O,

the tangential field components are made continuous

and this leads to four simultaneous equations which

must be solved for the reflection and transrnissiol ~ co-

efficients. The fields are obtained from the two Her (-zian
4

potentials fi~ and I13r by means of (2), (7), (13), and

(15). There are two different expressions for EV and HU

which, however, yield the same results. In writing the

continuity equations for the transverse field cornpo-

nents, the functions of x and other common factors will

be deleted to save space. The following equations,, ex-

pressing continuity of Ev, Hz, E., and H,, respectively,

are obtained

(36)

(37)

(38)

(39)
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where R is the complex reflection coefficient, A., B., C.,

and D. are unknown amplitude coefficients, and

The amplitude of the dominant mode on the output side

of the junction, i.e., for z>O, is B“.

Multiplying (36) and (37) by

/6.. wr

v-coS—y
bb

ancl (38) and (39) by

/Z- n.

v—sin—y
bb

fortz=O, l, . . ., N, in turn, and integrating from y = O

to y = b, converts these equations to the following

algebraic equations

where

AN EXAMPLE

The reflection and transmission coefficients were cal-

culated for an H1o mode incident on a partially filled

guide, as illustrated in Fig. 2, for values of t/b ranging

from O to 1. The free space wavelength was 3.14 cm, the

dielectric constant was 2.52, and the internal waveguide

dimensions were 0.9 xO.4 inch. The dominant mode and

two evanescent modes (one LSE and one LSM mode)

were taken into account in both the empty and par-

tially filled guide. This led to a sixth-order determinant

which, however, had fifteen of its elements equal to

zero, and was readily reduced to a third-order determi-

nant. This latter determinant gave (1 — R) /(1 +R) as

the ratio of two second-order determinants. In Fig. 3

opposite, the modulus and phase angle of the reflection

coefficient are plotted, while the phase angle of the

transmitted wave is plotted in Fig. 4. The computed

values of the transmission coefficient phase angle are not

very accurate, because of their small absolute value. The

N ( ‘):0– ko2(l + R)Ao = ~ BK YIC2 – ~ x %d’,,o,
)

~-=o

( ‘2)‘12-2 ‘n ‘& B4~~2-:)$Y’pn “= 12”),

cn(r?-;)=1~DK(fl~2-;)bn~ L= L2.A7,}.

(40)

(41)

(42)

(43)

This latter system of equations may be written in

matrix form as a set of four homogeneous matrix equa-

tions. For a solution for the amplitude coefficients, the

resultant determinant of the over-all system must van-

ish and this gives the value of the reflection coefficient

directly. Alternative y, A. and C. may be eliminated by

means of (40) and (43), leaving a system of two ssts of

equations involving Bk and Dk. The required solution for

any particular case is obtained in a straightforward

manner, but the general details are too lengthy for

inclusion here.

measured values are also plotted in the above figures

and in all cases are within the estimated experimental

error from the computed values. The measured values

were obtained by the usual tangent method, i.e., by plot-

ting the field minimum position in the partially filled

guide vs short circuit position in the empty guide and

subsequent analysis of the resultant curve. The dielec-

tric slab was located in the slotted standing-wave de-

tector section.

It is interesting to note that the modulus of the re-

flection coefficient is within one or two per cent of what
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0.4

t

0.3

IRIt ‘4
‘“:~

o 0,2 0.4 0,6 0.8 1.0
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175°—

(b)

Fig, 3—(a) LIodulus of reflection coefficient, (b) phase angle
of reflection coefficient.

+

+

L.BO -

0

-o.5°— — ~heore tlCd!

+ ExPerimen tal

Fig. 4—Phase angle of transmitted wave.

one would compute by assuming that the junction is

ecIuivalent to a junction of two transmission lines with

characteristic impedances proportional to the respec-

tive wavelengths in the empty and partially filled

guides. From Fig. 3(b), it is seen that for values of

t/b<0.82, the phase angle of the reflection coefficient is

greater than m radians, while for v.ilues of t/b> 0.82

the phase angle is less than r radians, corresponding re-

spectively to more electric energy than magnetic energy

stored in the evanescent modes at the junction and vice

versa. The evanescent LSF. modes store more magnetic

energy, while the evanescent LSM modes store more

electric energy, except when the moc[es are close to

propagating, so that

Ii-’ T’
Y,,z < — and ~ns < —- .

a’ a“

For values of

T’
:>0.85, 712<>

and the first evanescent LSM mode stclres an excess of

magnetic energy at the junction, resulting in a phase

angle of less than r radians for the reflection coefficient.

These resu] ts are obtained by considering oinl y a

small number of modes. If a larger number of modes are

taken into account, sufficient compensation may take

place so that the phase angle of the reflection coefficient

does not become less than T radians for this particular

sample. Further calculations are required to clarif:y this

behavior.

The modulus of the transmission coefficient can be

computed only when the characteristic impedances of

the empty and partially filled guide have been specified.

Since these may be specified in any convenient way, the

modulus of the transmission coefficient is not unique, the

oldy restriction

be equal to the

tlected power.

being that the transrnitl:ed power must

difference between the incident and re-

CONCLUSION

The use of the R-R method for obtaining approxima-

tions to the first IV eigenfunctions in a partially filled

guide permits one to evaluate, in a straightforward lman -

ner, the junction discontinuity existing between an

empty and partially filled guide. The reduction in com-

putational labor is considerable, and the solution of

transcendental equations and the evaluation of nnany

complex expressions is avoided. The method outlined

here may equally well be applied to the evaluation of

the parameters of a slotted dielectric interface in free

space.

APPENDIX

Eq, (32) in the text may be written in matrix form as

follows

‘“K’E”::::El““
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or more briefly as since Tij = Tii and Pij = Pii and where ~Ulk } is a row

[Tz,] [a,Kl = 7K2[~iil[ox] (45)
matrix. Postmultiply (4) by [ai~ ], premultiply (3) by

~u,~}, and subtract to get

(YK’ – 7R’) {ajK] [~zjl[w] = 0. (48)

(46)
When VK2 +VE2, (5) gives

Take the transpose of (2) to get NN

or

~am-] [~ij] = -y#{a,~} [piiJ,

upon development of the matrix product. This proves

(47) the orthogonality of the eigenvectors.

Coupling Through an Aperture Containing an

Anisotropic Ferrite*
&

DONALD C.

Summary—Coupling through an aperture containing anisotropic

ferrites is investigated theoretically by a simple extension of Bethe’s

small-hole coupling theory to include the dipole moment of the body

in the aperture. The magnetic dipole moment of the ferrite body is

ordinarily a vector but becomes a tensor upon the application of a

magnetostati: field. This new theory is applicable to any situation
where Bethe’s small-hole coupling theory is valid. Experimental

verification was quite satisfactory and was obtained on two Bethe-

hole type couplers: one with the waveguides parallel, and the other
with the waveguides perpendicular.

INTRODUCTION

T

HE THEORY of coupling through small windows

was formulated by Bethe more than a decade

ago.1 Initially, he found that the amplitudes of the

modes excited in a waveguide by a window were pro-

portional to

where field 1 is the excited field, field 2 is a normal mode

of the guide, and ~i is the inward normal. Later, he

evaluated the integral over the window by developing a

lumped-constant theoryz for small windows and then

applied this lumped-constant theory to side windows3

in waveguides.

* Manuscript recei~,ed by the PGMTT, November 7, 1956. This
work was supported by the U. S. Navy at the [Tniv. of Calif. under
contract N7-ONR-29529 and is based on a thesis submitted in partial
fulfillment of the requirements for the Ph.D. degree, Dept. of Elec.
Eng-., Univ. of Calif., 1956.
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2 H. A. Bethe. ‘{Lum~ed Co&tants for Small Ir’ises. ” M. I.T. Rad.
Lab. Rep. 43-22; Marcfi 24, 1943.

8 H. A. Bethe, “Theory of Side Wkdows in Wal,e Guides, ” M.I. T.
Rad. Lab, Rep. 43-27; April 4, 1943.

STINSONt

Bethe’s coupling theory depends upon his lumped-

constant theory for small windows, which in turn de-

pends upon replacing the excitation caused by the

window by a quantity which is proportional to the fol-

lowing parameters: 1) frequency; 2) the normal electric

or tangential magnetic field (exciting field) which would

exist at the center of gravity of the window if the win-

dow were replaced by a solid metal wall; 3) the corre-

sponding fields (induced fields) of the normal modes

which are excited by the window; and 4) lumped con-

stants (polarizabilities) which are functions only of the

shape and dimensions of the window. The basis of his

lumped-constant theory depends upon the fact that the

excitation of the window can be replaced by “equiva-

lent” electric and magnetic dipole moments. These

“equivalent” electric and magnetic dipole moments lead

him to consider the polarizabilities (which are defined as

the “equivalent” dipole moments per unit incident

field) as the true lumped constants of the window. This

is logical since a window may act as either an inducti>~e

or capacitive element, depending upon its location and

the propagating mode in the waveguide.

Since his coupling theory applies only to cases where

the window and the waveyuides are filled with the same

isotropic and homogeneous material, it is the purpose of

this paper to extend his theory to include cases where

the window is completely filled with an anisotropic fer-

rite. The ferrite involved is anisotropic in the sense that

its permeability becomes a tensor upon the application

of a magnetostatic field. This extension will be made by

adding the ‘(equivalent” magnetic dipole moment of the

ferrite to that of the window.


