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Application of Rayleigh-Ritz Method to Dielectric

Steps in Waveguides™
R. E. COLLINT anp R. M. VAILLANCOURTY

Summary—The Rayleigh-Ritz method is applied to obtain ap-
proximations to the first N eigenfunctions and corresponding eigen-
values in an inhomogeneously filled rectangular waveguide. These
approximate eigenfunctions are then used to obtain a solution for the
reflection and transmission coefficients at the junction of an empty
and partially filled waveguide. Theoretical and experimental results
are given for a dielectric slab which extends completely across the
broad dirnension of the guide, but only partially across the narrow di~
mension. The experimental values are within the experimental error
of the computed values obtained by considering the dominant mode
and only two evanescent modes.

INTRODUCTION

W'AVE propagation in a waveguide inhomogene-
ously filled with a dielectric has been studied by
many authors.! As a general rule, the modes are
more ccmplex and transcendental equations have to be
solved, in order to find the propagation constants of the
various modes. This has led several authors to consider
the application of variational methods for obtaining ap-
proximations to the eigenvalues.’™* By means of the
Rayleigh-Ritz method (hereafter called the R-R meth-
od), one may obtain approximations for the first .V ei-
genvalues, and also for the first 'V eigenfunctions.>® In
this paper, the discontinuity between an empty and an
inhomogeneously filled rectangular guide will be studied
using the R-R method. The following procedure is used.

1) The first IV eigenfunctions in the inhomogeneously
filled guide are approximated by the Rayleigh-
Ritz method.

2) Equations expressing the continuity of the tan-
gential field components at the junction are then
casily written down and solved for the reflection
and transmission coefficients.

* Manuscript received by the PGMTT, October 16, 1956.
t Canadian Armament Res. and Dev. Establishment, Valcartier,

L. G. Chambers, “Propagation in waveguides filled longitudi-
nally with two or more dielectrics,” Brit. J. Appl. Phys., vol. 4, pp.
39-45; February, 1953. (This is a review article containing sixteen
references.)

2 L. G. Chambers, “Compilation of the propagation constantsof an
inhomogeneously filled waveguide,” Brit. J. dppl. Phys., vol. 3, pp.
19-21; January, 1952.

3 L. G. Chambers, “An approximate method for the calculation of
propagation constants for inhomogeneously filled waveguides,”
Quart. J. Mech. and Appl. Math., ~ol. 7, pt. 3, pp. 299-316; Septem-
ber, 1954.

* A. D. Berk, “Variational principles for electromagnetic resona-
tors and waveguides,” IRE TraNs., vol. AP-4, pp. 104-111; April,
1956.

8 R. Courant and D. Hilbert, “Methods of Mathematical Phys-
ics,” Interscience Publishing Co., New York, N. Y., 1st English ed.,
p. 175; 1953.

6 R. Weinsto~k, “Calculus of Variations,” McGraw-Hill Book
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In a rectangular guide inhomogeneously filled with a
dielectric slab, as in Fig. 1, the two sets of fundamental
modes are the longitudinal section electric and magnetic
modes (LSE and LSM modes), having the electric and
magnetic vector, respectively, contained entirely within
a longitudinal section. In an empty guide, the TE and
TM modes may be derived from a magnetic and an
electric Hertzian potential having only a longitudinal
component respectively.” By analogy with this problem,
it is readily seen that the LSE and LSM modes may be
derived from a magnetic and an electric Hertzian po-
tential, respectively and having a single component di-
rected normal to the dielectric-empty guide interface.
These two sets of modes form a complete set in which
any arbitrary field distribution may be expanded.?
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Fig. 1—Inhomogeneously filled rectangular waveguide.
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For a general inhomogeneously filled cylindrical
guide, the division into LSE and LSM modes is not
possible,

When an H;, mode is incident at the junction of an
empty rectangular guide and a guide partially filled, as
in Fig. 1(a), both LSE and LSM modes are excited. In
the case of Fig. 1(b) with an Hiy mode incident, only H,,
modes are excited. The case of Fig. 1(a) is considerably
more complex and, therefore, was chosen as a good ex-
ample to which the R-R method could be applied.

This same tvpe of dielectric step discontiuity has
been treated in a recent paper by Angulo, using the cor-
rect expressions for the eigenfunctions and a variational
method for evaluation of the equivalent circuit param-
eters.? However, the coupling of the LSE modes by the

7 J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co., Inc., New York, N. Y., sec. 6.1; 1941.

8 J. Van Bladel, “Field expandibility in normal modes for a multi-
layered rectangular or circular waveguide,” J. Franklin Inst., vol.
253, pp. 313-321; April, 1952.

9 C. M. Angulo, “Discontinuities in a rectangular waveguide par-
tially filled with dielectric,” IRE Trans., vol. MTT-5. pp. 68- 74;
January, 1957.
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step when a LSM mode is incident is neglected. There-
fore, the results obtained are only approximate and
valid for small discontinuities; 7.e. (¢<Kb or t=b, where ¢
is the slab thickness and & the waveguide height) when
the amplitudes of the coupled LSE modes are small.

This same step has been analyzed by R. E. Collin
(unpublished work) as well as the simpler case of the
H-plane dielectric step.!®

Use of the R-R method has the great advantage of
avoiding evaluation of many complicated expressions,
especially for cases where a waveguide cross section is
divided into more than two regions by dielectric media
of different dielectric constant.

Wave EQuaTioN FOR THE MODES

In order to bring the problem being studied into the
class that can be handled by the normal Sturm-Liouville
theory, the rectangular guide will be considered as filled
with a lossless dielectric material with a dielectric con-
stant which is a continuous function of the coordinate y,
but independent of ¥ and z. From the theory for the
continuous case, one may readily pass to the case where
the dielectric constant is a discontinuous function of »;
e.g., aslab filling. With a varying dielectric constant, the
wave equation satisfied by the Hertzian potentials are
modified and therefore will be derived here.

LSM Modes

Maxwell’s equations in a source free medium are

VvV X H = 7w€0KE (1a)
VXE = — JwﬂH (1b)
=
V-B =0, (1c)
V-kE =0, (1d)

where k is the relative dielectric constant and here is
considered as a function of y.
By virtue of (1¢), one may take

—

. —>
H = ]a)éov X HE (2)
N
where Il is an electric Hertzian potential with a y com-
ponent only. From (1b)
— —

which integrates to

- —
E = kg + Vo. (3)
From (1a)

— — — —>
VXV XIg =VV Il — Vg = kkeg + «Vé
—>
= kky*Ng + Vkdp — ¢Vk. (4)
1 R. E. Collin and J. Brown, “The calculation of the equivalent

circuit of an axially unsymmetrlcal waveguide junction,” Proc. IEE,
vol. 103, pt. C, pp. 121-128; March, 1956.
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N
As vet V¢ and V Ilg are unspecified and one may,
therefore, put
BN
VV -z = V¢

which apart from an irrelevant constant integrates to
—
Vg = k. 5)

=
From (5), ¢ =x~1V-1Iz and hence the wave equation for
iy

g, i.e., (4) becomes

— —> —
V2HE + Kk02HE —_ K71VKV'HE =0 (6)
while (3) for the electric field becomes

—

E

I

k02HE + V(- IIE)

= V- HEVK“1 =+ k= 1VV Hu + Kk()zHE

= Kk()?HE + n 1VV HE — K%V HEVK

=V XV X HE, (7

this latter result following from the wave equation.
From (7), one sees at once that (1d) is satisfied, since

— -
VkE =V-(VXV XTI =0.

For a variation with x according to sin wx/a and ex-
ponential z dependence, the solutions to (6) are of the
form

- = T

g = 1y sin — yg(y)e=* (8)
a
where Y5 is a solution of the Sturm-Liouville equation
g de dym

72
— kTt == (kb — =+ 2 )Y =0, (9
dy® ‘ dy dy <K0 a? 7>¢E ©)

or equivalently

d 1 dyg

Tr‘)
e et I 2B
dy « dy P KRo™ +7 12

Eq. (9) has an infinite number of solutions ¥z, with cor-
responding eigenvalues <,% These solutions form an
orthogonal set with respect to the weighting function
k! and may be normalized so that

b
f ¢En¢ESK*1d;V = 571,3 (10)
0
where 8, is the Kronecher delta and is equal to unity,
if =35 and zero otherwise. When « is a continuous {unc-
tion, both ¢ g, and dyz./dy are continuous.
When « is the discontinuous function,

k() = ko — (ko — DU(y — (11)
where U(y—1) is the step function
Uy — 1) = {0’ y <t (12)
Loyvzy
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Vg, and k" (dyg,/dy) are continuous in order that the
tangential field components should be continuous at the
interface. At y=o0, b, dyg./dy vanishes. The term

- dk d‘PE
dy dy
in the differential equation (9) becomes
1 — k)d(y — 1) ﬁ,
dy

where 3(y—1) is the Dirac impulse function. The term
dyg/dy is discontinuous at y=¢ and hence, the second
derivative also has an impulse discontinuity at y=4. The
physical reason for these discontinuities is the polariza-
tion charge in the dielectric.

LSE Modes

The Jongitudinal section electric modes do not have a
component of electric field parallel to Vk and, therefore,

— - —
VkE=xV-E+ E-Vk =0

%
gives V- E=0. For these modes, one may take
— . —
E = — jouV X Oy (13)

-3
where Iy is a magnetic Hertzian potential with only a
y component, From (1a),

— — —
V X H = Kk02V X HJ[ = kOQV >< KHAI,

since

—

— —> —
\y >‘< KHM = V X HM -— HM >< Vi = kV X IIM.

This equation integrates to

—>

H—Kko M—*“V‘U

From (1b),
— — —
VV'HM —_ VQHM == Kk()EHM + V.

— —
Let VV- 11y =Vv and the wave equation for Il becomes

— —
VQHM + Kk02HM = 0, (14)
—
while the equation for H becomes
-—>
"Kk02HM+VV HM——VXVXHM (15)

With an x variation according to cos wx/a and exponen-
tial 5 variation, the solution to (14) is of the form

—> b d gt
Il = 14 COS —

Yuly)etts, (16)

where Y is a solution of

A%

pie an

,".2
+ (Kk02 -—+ [32> Y = 0.
a
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Eq. (17) has an infinite number of solutions, Y, with
corresponding eigenvalues, 8,2 and these solutions can
be chosen to form an orthonormal set such that

b
f San\I/JIsd'y = Ops. (18)
]
Both Y, and dyu./dy are continuous, irrespective of
whether k is continuous or not. At y=0, &, ¥, vanishes.

MiNiMUM CHARACTERIZATION OF THE EIGENVALUES
LSM Modes

If (9) is multiplied by « %W and the term involving
the second derivative integrated by parts once (this
term vanishes, since ¢z and x~Y(dyz/dy) are both con-
tinuous and dyr/dy vanishes at y=0, b), one gets

b b d‘p 2
Lo )
~ (Kkoﬂ - 1) W} iy = 0. (19)
"

Eq. (19) is a variational expression for the propagation
constant y2 An extremisation of this equation by that
class of functions ¢(y), which are continuous with at
least a piecewise continuous derivative and orthogonal
to the first K—1 correct eigenfunctions ¥g, with re-
spect to the weight factor k=1, yields an upper bound on
the true eigenvalue vx2 By means of the expansion
theorem for a complete set of functions, one may write

5]

qS = Z an‘pEn- (20)
0
The orthogonalization conditions give
a, = 0; n=201---K—1 (21)
Substituting into (19), gives
o~ 2 & (d¥r. dYpn
y? Z a, = Kvl Z Z {___ -
K ==K =K dy dy

— <Kk()2 - 1{)) wEolpEn} anas(lr:\’
a2

= i Zw: s {( ~, ﬂf")

s=K n=K d}’

_f [Ebdﬁ’;i"_
(e e

The integrated term vanishes and, using (9) and (10),
the result is

0

=] o0
y? Z a,? = Z RS

n=Hh n=K

(22)
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Assuming that the eigenfunctions ¥z, have been ordered
so that y? <712 <ys? - - - <vx?, the result (22) may be
written as

0 w0
E an¥n? Z a2 (v — v&?)
n=K n=RK-41
v= = y&* + = > vx’, (23)
2 o’ 2 ot
n=K n=K

since y.2>vx? for n>K. Only when ¢=¢zx, will
v?=vx% In general, the approximate eigenvalue is too
large. A suitable series of functions to use for this ex-
tremisation are the corresponding eigenfunctions for the
empty guide. For the LSM modes these are

€on N
— cos — ¥,
b

n=2012.--,
b

where €,, is the Neumann factor,

b
eon =
2,
LSE Modes
For the LSE modes, the variational expression cor-
responding to (19) is

Lo )

71.2
—_— <I€k02 —_— '(*];) IPMZ} dy = O (25)

As for the previous case, the approximation to the Kth
eigenvalue by that class of functions which are continu-
ous and vanish at y=0, &, and are orthogonal to the
first K —1 eigenfunctions ¥y, is from above. A suitable
set of functions for this extremisation are again the cor-
responding functions for the empty guide, .e.,

4/7 . nm 12
Grn = —sm—y, n=1424- ---.
M b by

The above variational expressions are also valid when
« is a discontinuous function of y.

=20
n > 0.

(26)

THE APPROXIMATE EIGENFUNCTIONS

This section will consider the solution for the first
N--1 approximate eigenvalues and corresponding ap-
proximate eigenfunctions for the case of the LSM modes.
In the previous section, it was shown that the extremisa-
tion of (19), with respect to functions which were
orthogonal to the first K —1 true eigenfunctions, gave
an upper bound on the Kth eigenvalue. Since one does
not know the true eigenfunctions, the class of functions
to be used for the Kth extremisation will be made
orthogonal to the first K —1 approximate eigenfunc-
tions. It may be shown that this procedure also yields
an upper bound on the Kth eigenvalue.’* The proof is

1t Courant and Hilbert, op. ¢it., ch. 6.
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based essentially on the principle that the class of func-
tions which are used for the first N+1 approximate
eigenfunctions is a narrower class of functions than the
complete set of true eigenfunctions.

The substitution of a series of the functions ¢z, into
(19) and subsequent extremisation leads to a matrix
eigenvalue problem. The resultant matrix is a symmetri-
cal real matrix whose eigenvalues are approximations
from above to the first N+1 eigenvalues. For each
eigenvalue, a solution for an eigenvector exists and the
totality of eigenvectors obtained form an orthogdnal set
with respect to suitable weighting factors. This latter
result follows from the well-known theory of real sym-
metrical matrices.!? For this reason, the orthogonaliza-
tion conditions, which were originally imposed upon the
functions ¢g,, may be dispensed with.

From this point on, ¥, and v,2 will be used to denote
the nth approximate eigenfunction and eigenvalue, re-
spectively. For the Kth approximate eigenfunction take

N
Yok = 9, GnkPEn 27

n=0

where a,, are unknown coefficients to be determined
subject to the normalization condition

b N N
f K_lkbEKedy - Z Z anKasKPsn = 1 (28)
0 s=0 n=0
where
b
Psn = Pns = f K_1¢En¢E8d:V-
0
Substituting into (19) gives
N N b
Z Z K_l {dd)Es d¢En
n=0 s=0¢ 0 dy dy
7r2 .
= \«k® — = + V&’ | $rsbEn dy
a
= stationary quantity. (29)
Let
f” l{dqﬁgs dpgn
K_ —_—
0 dv dy
- (Kk02 - ”-2)¢E8¢En} dy = Tsn = Tns (30)
a
Thus,
-
> > ax@ux(Ton — vx2Psy) = stationary quantity. (31)
=0 n=0
Equating all 8/da.; equal to zero for =0, 1, - - -, N,
vields the following set of homogeneous equations
N
3 0k (Tan = ¥&2Po) =0, s=0,1,---N. (32

n==0

2 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Princi-
ples of Microwave Circuits,” M.I.T. Rad. Lab. Ser., McGraw-Hill
Book Co., Inc., New York, N. Y., vol. 8, pp. 405-409; 1948.
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For a solution, the determinant must vanish and this
results in V41 roots for yx?® which are the N+1 ap-
proximate eigenvalues. For each root, say vx? a solu-
tion for a.x can be obtained, this solution is unique
when subjected to the normalization conditions (28).
The set of coefficients a,x are orthogonal to the set a,z
with respect to the weighting factors P,, for KR, i.e.,

N

A
Z Z anRasKPsn = 0RE.

n=0 =0

(33)

The proof is given in the Appendix.
For the LSE modes, the set of homogeneous equations

obtained are

s=1,2,---N,

N
Z an(an - 6K25sn) =0, (34)
n—L

where

Djd()b]l[s doun
1 dy dy

2
— (Kko2 - lr—)) ¢Ms¢Mn} dy. (35)
a?

The vanishing of the determinant yields the first N ap-
proximate eigenvalues. The corresponding eigenvectors
define the corresponding approximate eigenfunctions.
The coefficients b,; are subjected to the normalization
condition

w

K=1,2--N,

3 b
and satisfy the orthogonality conditions

N
> bugbur = 0, R # K.

n=1
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/‘/— (I‘OZ - *:) (14 Rdo+ 2 A <Fn2 - 0> 4
b a” n=1 as

1 N
iweol’o(l—R) /‘/—Z‘AO—']'LOGQZAF /‘/——COS‘—y—
n=1 s=1

= jweg Z Bryr Z Ank

n=0

/‘/—smﬁy

y 2 arm N onpw?
dop Y, Col'y Ism—y—— > -

n==1 =1

ol N onn? 2w
= _—7"0“ZDI\‘81¥Z bnA w—sm—~y— ZBKZ _I;—dnKK—l ;sm?y,

K=1

N
Z Cn <I‘n2 -

n=1

x? ¥l nr N
IVA/ = sin—y = 3 De(Bx?
a2>/‘/b b KE "(6"
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MATCHING OF FIELDS AT JUNCTION

Consider the junction of an empty and inhomogene-
ously filled rectangular guide as illustrated in Fig. 2.

t
i

. e NN A AN B -
.y t . RA <« 7%
t ‘-\a——n ‘

30
Fig. 2—Junction of an empty and partially filled rectangular guide.

>3

Let an H;o mode be incident from the empty guide. The
higher order modes excited will consist of an infinite
number of the LSM and LSE modes. It will be assumed
that only the dominant mode, 7.e., the first LSM mode,
propagates in either the empty or partially filled guide.
For an approximate solution, only a finite number of
modes are considered and in the partially filled guide
these will be taken as the approximate eigenfunctions
as obtained by the R-R method. At the junction z=

the tangential field components are made continuous
and this leads to four simultaneous equations which
must be solved for the reflection and transmission co-
efficients. The ﬁelds_%re obtained from the two Hertzian

=
potentials IIz and II, by means of (2), (7), (13), and
(15). There are two different expressions for E, and H,
which, however, yield the same results. In writing the
continuity equations for the transverse field compo-
nents, the functions of x and other common factors will
be deleted to save space. The following equations, ex-
pressing continuity of E,, H,, E,, and H,, respectively,
are obtained

nr
— COS — ¥
N i N N a nr
= 2 Bx|vx®— - Unxk ! — Cos — ), (36)
K=0 a’/ n=0
/‘/ﬁ oS — y
nw Y
—cos—~v— > MDK bk 4/)(:05*% (37
b K=1 @&
(38)
K=0 n=1 a
™\ Y nw )
E box /‘ —sin — vy, {39)
=]
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where R is the complex reflection coefficient, 4,, B, C,,
and D, are unknown amplitude coefficients, and

7 alr?

ST

T2 =
a? b2

The amplitude of the dominant mode on the output side
of the junction, <.e., for >0, is B,.
Multiplying (36) and (37) by

P
— cos —
b b Y

and (38) and (39) by

1/7 . onw
— s —
b b’

for n=0, 1, - - -, N, in turn, and integrating from y =0
to y=>, converts these equations to the following
algebraic equations
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AN EXAMPLE

The reflection and transmission coefficients were cal-
culated for an H;, mode incident on a partially filled
guide, as illustrated in Fig. 2, for values of ¢/b ranging
from 0 to 1. The {ree space wavelength was 3.14 cm, the
dielectric constant was 2.52, and the internal waveguide
dimensions were 0.9 X0.4 inch. The dominant mode and
two evanescent modes (one LSE and one LSM mode)
were taken into account in both the empty and par-
tially filled guide. This led to a sixth-order determinant
which, however, had fifteen of its elements equal to
zero, and was readily reduced to a third-order determi-
nant. This latter determinant gave (1—-R)/(1+R) as
the ratio of two second-order determinants. In Fig. 3
opposite, the modulus and phase angle of the reflection
coefficient are plotted, while the phase angle of the
transmitted wave is plotted in Fig. 4. The computed
values of the transmission coefficient phase angle are not
very accurate, because of their small absolute value. The

N 2\ N )
-—k02(1 + R4, = Z Bx <’)’K2 - 7) Z anx Pro, |
K=0 a°/ n=0
- N N\ N (4O>
(Tﬁ - W)An = 2 Bx (VKZ - M) 2 axPu, n=12 N,
a? K=0 a?/ 2o )
N
To(l — R)4y = Z Bryraog, }
KE—0
9 l (41)
) na? X nr X
joweolwAy 4+ —— Co = — jweo ) Bryrtng + —— 9 Dicbuxe, 7= 1,2, - - N,’
ab K=0 A0 RK==1 ]
] nw? X nad X Y 1
jw,Uanrn - 4n = o Jeu Z DKﬁKan - Z BK Z asK]sn {
K=1 a0 K~o s=1
where ( (42)
b? ? |
].w = Tsn+ k02asn_-P~n]; n = 1,2, v Ar‘i
n2i? at )
7 y T
Cn <F“2 — 7) = ZDK (ﬁKQ - '—q> an, n = 1, 2, cct A7,} . (4'3)
a K=1 a”

This latter system of equations may be written in
matrix form as a set of four homogeneous matrix equa-
tions. For a solution for the amplitude coefficients, the
resultant determinant of the over-all system must van-
ish and this gives the value of the reflection coefficient
directly. Alternatively, 4, and C, may be eliminated by
means of (40) and (43), leaving a system of two szts of
equations involving By and Dy. The required solution for
any particular case is obtained in a straightforward
manner, but the general details are too lengthy for
inclusion here.

measured values are also plotted in the above figures
and in all cases are within the estimated experimental
error from the computed values. The measured values
were obtained by the usual tangentmethod, 7.¢., by plot-
ting the field minimum position in the partially filled
guide vs short circuit position in the empty guide and
subsequent analysis of the resultant curve. The dielec-
tric slab was located in the slotted standing-wave de-
tector section.

It is interesting to note that the modulus of the re-
flection coefficient is within one or two per cent of what
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Fig. 3—(a) Modulus of reflection coefficient, (b) phase angle
of reflection coefhicient.
+
0.5
- +
LBor +
o) L+ g | | | "
: 0.2 0.4 0.6 +0_8 1.0 F
-
sl — Theoretical

+ £ xperimental

Fig. 4—Phase angle of transmitted wave.

one would compute by assuming that the junction is
equivalent to a junction of two transmission lines with
characteristic impedances proportional to the respec-
tive wavelengths in the empty and partially filled
guides. From Fig. 3(b), it is seen that for values of
t/5<0.82, the phase angle of the reflection coefficient is
greater than 7 radians, while for values of {/6>0.82
the phase angle is less than 7 radians, corresponding re-
spectively to more electric energy than magnetic energy
stored in the evanescent modes at the junction and vice
versa. The evanescent LSE modes store more magnetic
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energy, while the evanescent LSM modes store more
electric energy, except when the modes are close to
propagating, so that

r? Tt
'Ynz < — and an < — -
a? a?
For values of
¢ R 7?2
—b‘ > (.85, v1* < ;—2

and the first evanescent LSM mode stores an excess of
magnetic energy at the junction, resulting in a phase
angle of less than 7 radians for the reflection coefficient.

These results are obtained by considering only a
small number of modes. If a larger number of modes are
taken into account, sufficient compensation may take
place so that the phase angle of the reflection coefficient
does not become less than 7 radians for this particular
sample. Further calculations are required to clarify this
behavior.

The modulus of the transmission coefficient can be
computed only when the characteristic impedances of
the empty and partially filled guide have been specified.
Since these may be specified in any convenient way, the
modulus of the transmission coefficient is not unique, the
only restriction being that the transmitted power must
be equal to the difference between the incident and re-
flected power.

CONCLUSION

The use of the R-R method for obtaining approxima-
tions to the first NV eigenfunctions in a partially filled
guide permits one to evaluate,in a straightforward man-
ner, the junction discontinuity existing between an
empty and partially filled guide. The reduction in com-
putational labor is considerable, and the solution of
transcendental equations and the evaluation of many
complex expressions is avoided. The method outlined
here may equally well be applied to the evaluation of
the parameters of a slotted dielectric interface in free
space.

APPENDIX

Eq. (32) in the text may be written in matrix form as
follows

Too Tor+- - Tox [UOK]

- I'vx LGA'KJ
Pno e P()N‘ aoK

vx? : (44)
Pf\'o crT P\Z\'-.

Two -

f

axNg
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or more briefly as

[T, 1[ax] = ve*[Pii]a.x] (43)
and for thz Rth solution as

[Te:]lem] = va*[Piil[air]. (46)
Talke the transpose of (2) to get

{aix} T3] = ve2laix ) [Ps],
or

{am) [T4] = vit{a ) [Pas, (47)
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since T4;=714 and P;;=Pj;; and where {a,k} is a row
matrix. Postmultiply (4) by [a;z], premultiply (3) by
{a,}, and subtract to get

(vg® — &% {ajx} [P.i]laz] = 0.

When yg?=vz? (5) gives

(43)

N N

Z E aansRPsn = O,

n=0 s=0

upon development of the matrix product. This proves
the orthogonality of the eigenvectors.

Coupling Through an Aperture Containing an

Anisotropic Ferrite
DONALD C. STINSONT

Summary—Coupling through an aperture containing anisotropic
ferrites is investigated theoretically by a simple extension of Bethe’s
small-hole coupling theory to include the dipole moment of the body
in the aperture. The magnetic dipole moment of the ferrite body is
ordinarily a vector but becomes a tensor upon the application of a
magnetostatis field. This new theory is applicable to any situation
where Bethe’s small-hole coupling theory is valid. Experimental
verification was quite satisfactory and was obtained on two Bethe-
hole type couplers: one with the waveguides parallel, and the other
with the waveguides perpendicular.

INTRODUCTION

HE THEORY of coupling through small windows
Twas formulated by Bethe more than a decade

ago.! Initially, he found that the amplitudes of the
modes excited in a waveguide by a window were pro-
portional to

f El X ﬁz'ﬁdé‘

where field 1 is the excited field, field 2 is a normal mode
of the guide, and # is the inward normal. Later, he
evaluated the integral over the window by developing a
lumped-constant theory? for small windows and then
applied this lumped-constant theory to side windows?
in waveguides.

* Manuscript received by the PGMTT, November 7, 1956. This
work was supported by the U. S. Navy at the Univ. of Calif. under
contract N7-ONR-29529 and is based on a thesis submitted in partial
fulfillment of the requirements for the Ph.D. degree, Dept. ot Elec,
Eng., Univ. of Calif., 1956.

t Lockheed Aircraft Corp., Sunnyvale, Calif.

T H. A, Bethe, “Formal Theory of Waveguides of Arbitrary Cross
Section,” M.I.T. Rad. Lab. Rep. 43-26; March 16, 1943,

2 H. A. Bethe, “Lumped Constants for Small Irises,” M.I.T. Rad.
Lab. Rep. 43-22; March 24, 1943.

3 H. A. Bethe, “Theory of Side Windows in Wave Guides,” M.L.T.
Rad. Lab. Rep. 43-27; April 4, 1943.

Bethe’s coupling theory depends upon his lumped-
constant theory for small windows, which in turn de-
pends upon replacing the excitation caused by the
window by a quantity which is proportional to the f{ol-
lowing parameters: 1) frequency; 2) the normal electric
or tangential magnetic field (exciting field) which would
exist at the center of gravity of the window if the win-
dow were replaced by a solid metal wall; 3) the corre-
sponding fields (induced fields) of the normal modes
which are excited by the window; and 4) lumped con-
stants (polarizabilities) which are functions only of the
shape and dimensions of the window. The basis of his
lumped-constant theory depends upon the fact that the
excitation of the window can be replaced by “equiva-
lent” electric and magnetic dipole moments. These
“equivalent” electric and magnetic dipole moments lead
him to consider the polarizabilities (which are defined as
the “equivalent” dipole moments per unit incident
field) as the true lumped constants of the window. This
is logical since a window may act as either an inductive
or capacitive element, depending upon its location and
the propagating mode in the waveguide.

Since his coupling theory applies only to cases where
the window and the waveguides are filled with the same
isotropic and homogeneous material, it is the purpose of
this paper to extend his theory to include cases where
the window is completely filled with an anisotropic fer-
rite, The ferrite involved is anisotropic in the sense that
its permeability becomes a tensor upon the application
of a magnetostatic field. This extension will be made by
adding the “equivalent” magnetic dipole moment of the
ferrite to that of the window.



